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The in-plane orientation of a nematic liquid-crystal sample, confined by two periodic microtextured sub-
strates, is theoretically analyzed by means of the Frank-Oseen continuum elastic theory and a suitable surface
term. In addition, an easy optical method to produce such textures using photopolymeric films is presented. It
is shown that, in the limit of large pattern period, the orientation depends only on the ratio of the splay and
bend elastic constants K1 /K3 and on the easy axis direction of the individual stripes. In the particular case for
which K1=K3, the stability depends only on the easy axis direction for a general pattern period.
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Alignment of nematic liquid crystals �LCs� by spatially
inhomogeneous surfaces has been analyzed since the pio-
neering work of Berreman �1�, who investigated the anchor-
ing effect of a periodically undulating surface, where the
surface anchoring is locally strong. The influence of inhomo-
geneous surfaces on the molecular orientation of a LC
sample has been analyzed by several authors in the frame-
work of the Frank-Oseen elasticity �2–10�. Recently, a nan-
orubbing technique was applied on a polymer to produce
orientational surface patterns with neighboring orthogonal
square domains, leading to an in-plane surface bistability
�11,12�. Subsequently, the same authors extended this sym-
metry approach to obtain a tristable nematic LC order �13�.
The particular interest in patterned substrates and multistable
devices is that they may allow the complete control of the
LC orientation direction and the reduction of energy con-
sumption during the optical activity �13,14�.

In the previous works, the textured surfaces were pro-
duced by nanorubbing techniques, using an atomic force mi-
croscope stylus to create structures in the micrometer range.
In this work, we present an easy method using optical tech-
niques to produce microtextures and a theoretical analysis of
the orientational conditions of a nematic LC sandwiched be-
tween two identical textured substrates. A schematic repre-
sentation of this substrate can be seen in Fig. 1, where a
pattern period L of the texture and the Cartesian coordinate
system are shown. In this figure, the diagonal lines represent
the easy axis directions made by the angle � with the x axis.
We suppose a flat substrate, i.e., without any topographic
variations.

The textures can be produced on azo-containing polymer
films, for which the photoalignment of the azo groups is

governed by the trans-cis-trans photoisomerization process
�15�. An example of a periodic microtexture with L
=15 �m and �� +60° ±3° and −60° ±3° is shown in the
optical image of the film in Fig. 2�a�, obtained by a polarized
microscope. The contrast in the figure arises from the differ-
ent orientation induced to the azo groups on the individual
stripes due to the uncertain of ±3°, seen between crossed
polarizers. The polymer �PS 119®-Aldrich� was dissolved
0.2 wt.% in water and coated on a glass substrate by the
casting method. The film was first homogeneously photo-
aligned at �= +60° ±3° using linear polarized light of a
Nd:YAG laser ��=532 nm�. Then, a second irraditation is
done by using the experimental setup illustrated in Fig. 2�b�.
The sample holder consists of a mirror with the plane fixed at
90 degrees from the place where the sample is positioned

FIG. 1. Schematic representation of the pattern periodic micro-
textured substrate used in this work.

FIG. 2. �a� Microtexture of period L=15 �m inscribed on a
photopolymer film with �� +60° and −60°; �b� experimental setup.
The periodicity of the interference pattern is given by L
=� /2 sin �.
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�which is the region where the interference fringes will be
formed�. This holder is mounted on a rotation stage, which
enables the angle � to be set according to the desired peri-
odicity, given by L=� /2 sin � ��=10→L�15 �m�. The po-
larization of incident light is rotated, in order to have the
direction of photoalignment at �=−60° ±3°, in the illumi-
nated regions, whereas the photoalignment direction remains
unchanged in the dark regions. This technique allows the
production of textures with periodicities down to the light
wavelength, and � can be controlled using a � /2 waveplate
to set the incoming polarization direction. A complete de-
scription of this experimental method will be published else-
where.

Let us consider a nematic LC sample of thickness d
bounded at both sides �z=0 and z=d� by two identical pat-
terned substrates exactly aligned, as described in Fig. 1. If
the period L is much larger than the nematic correlation
length, the LC director n tends to align parallel to the easy
axis in each domain, with a continuous distortion through the
borders of these domains. With these assumptions, it is ex-
pected that �i� the director n lies parallel to the xy plane and
�ii� at the boundary of the domains, x=nL /2 �n
=0, ±1, ±2,…�, the angle between the director and the x
axis can be either �0=0 or � /2, corresponding to the differ-
ent states presented in Fig. 3. To calculate the preferred con-
figuration of the system, we use the Frank-Oseen continuum
elastic theory and a suitable surface term, which represents
the surface LC interaction.

The total energy of the system is

F =� d3r�Fd�r� + FS� , �1�

where

Fd�r� =
1

2
K1�� · n�2 +

1

2
K3�n � � � n�2 �2�

is the elastic energy density �16�, where K1 and K3 are the
splay and bend elastic constants, respectively, and

FS =
1

2
W sin2���x� − ����z� �3�

is the frequently used Rapini-Papoular form for the anchor-
ing energy �17�, where Eq. �3� refers to both surfaces. In this
equation W=2WS, where WS is the anchoring energy strength
of each surface and ��z� is the one-dimensional delta func-

tion. Since it is assumed that the two substrates are identical
and exactly aligned, the director n lies parallel to the xy
plane �18� and, therefore, the LC director n can be written as

n = „cos���x��,sin���x��,0… . �4�

The resulting total energy F for the in-plane director n in
our coordinate system can be written as

F =� d3r
1

2
�K1sin2���x���d��x�

dx
	2

+ K3cos2���x��

� �d��x�
dx

	2

+ W sin2���x� − ����z�
 .

By integrating the above expression, the energy per unit area
can be written as

F

ld
= 4�

0

L/4 1

2
�K1sin2���x���d��x�

dx
	2

+ K3cos2���x��

� �d��x�
dx

	2

+ �W

d
�sin2���x� − ��
dx , �5�

where l is a length due to the integration in y, and d is the
thickness of the sample, resulting from the integration in z.
In the limit of large L, or when K1=K3, the energy per unit
area can be obtained by integrating only from zero to L /4,
instead of integrating on the whole period �from −L /2 to
L /2�. This can be done due to the symmetry of the system
for large L, or when the elastic constants of splay and bend
are the same �K1=K3�. It means that the energies of the re-
gions between x=0 and x=L /4 and between x=L /4 and x
=L /2, for example, are the same. This is also valid for the
surface energy term because its value remains the same by
changing � to �+�. To find the equilibrium profile of ��x�,
one has to minimize the expression �5� by solving the Euler-
Lagrange equation. After a first integration, the result is the
following first-order differential equation:

�d��x�
dx

	2

=
�W

d �sin2���x� − �� − C

K1sin2���x�� + K3cos2���x��
, �6�

where C is an integration constant. A general way to deter-
mine C is by applying Eq. �6� into Eq. �5�, where the mini-
mization of the resulting expression with respect to C can be
performed numerically. In the limit of large L, however, one
can easily determine the constant C by realizing that, in this
limit, ��x�=� in the middle of the domains, i.e., in x
=n�L /2�+L /4, and that

�d��x�
dx

	
x=nL/2+L/4

= 0. �7�

From these conditions, it is possible to find that C=0 for
large L �which means �50 �m or higher�, and Eq. �6� is
given by

�d��x�
dx

	2

= �W

d
� sin2���x� − ��

K1sin2���x�� + K3cos2���x��
. �8�

For a general L, the condition �7� is also valid. However,
in this case, ��x� is different from � in the middle of the

FIG. 3. Possible director configurations: state I, with �0=0;
state II, with �0=� /2.
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domains and also the constant C is not zero. An example of
the ��x� profile for a general pattern period L is shown in
Fig. 4 for both values of �0 from x=0 to x=L /2. To make
this figure, ��x� was calculated from 0 to L /4 by using Eq.
�6�. As K1=K3, the result of ��x� from L /4 to L /2 is sym-
metric to the one calculated for the interval 0 to L /4. We
used the following parameters values: WS=2.5�10−6 J /m2,
d=20 �m, �=45°, and K1=K3=10−11 N.

From Eq. �8� it is possible to determine which one of the
two different configurations ��0=0 or �0=� /2� the system
prefers to adopt, by comparing the total energy of these two
configurations. Evidently, the preferred configuration de-
pends on the angle � of the easy axis, however there exists
an angle for which the energy is the same in both configura-
tions. This is a critical angle that we call �C. It means that,
for a system with �=�C, both states �I and II� are stable. For
�	�C, the system should prefer the configuration with �0
=0 in x=nL /2 �state I�, whereas for �
�C the system pre-
fers the configuration with �0=� /2 �state II�.

For a general pattern period L, the critical angle �C de-
pends on the specific values of the quantities W ,d ,K1, and
K3, due to the constant C variation for different values of
these parameters. In the limit of large L, however, ��x
=nL /2+L /4� is always equal to �, reflecting the fact that far
from the domain boundaries the LC director should align
parallel to the easy axis. As a consequence, the critical angle
�C is independent of all particular values of the anchoring
energy strength W or the sample’s thickness, d; it is also
independent of the particular values of the elastic constants
K1 and K3. In fact, according to our calculation, in the limit
of large L, the critical angle �C depends only on the ratio of
the elastic constants K1 /K3.

The calculation to find �C was performed by looking for
the value of � for which the energy F calculated with �0
=0 and with �0=� /2 are the same. By using Eq. �8�, we
found that the critical angle is observed for �=32.5°
�K1 /K3→0� and �=57.5° �K1 /K3→��. The dependence of
�C as a function of the ratio K1 /K3 is shown in Fig. 5 for

0	K1 /K3	10, where the solid line describes the situation
in which both states I and II are equally probable, in the limit
of large L. For example, by considering the LC 5CB �4-
pentyl-4�-cyanobiphenyl� for which the value of K1 /K3
=0.7 �19�, the critical point occurs at �C=43.25°. For any
value of � below or above �C=43.25°, the LC director as-
sumes a stable configuration in state I or state II, respec-
tively. For this particular case, a stable configuration of the
sample could be induced to state I or state II just by applying
an in-plane electric field parallel to the x axis or y axis,
respectively. By changing the value of � to lower or higher
values, this condition of stability for both states is lost. An-
other example is given in Fig. 6, where the energy per unit
area �Eq. �5�� is shown as a function of �0 for K1=K3, con-
sidering large L. As K1=K3, it is expected that �C=45° �see
Fig. 5�. Actually, for �=45° two minima of the energy are
observed at �0=0 and �0=� /2, and they have the same
value. For �=30°, i.e., �	�C, the minimum of the energy

FIG. 4. An example of the profile ��x� calculated from Eq. �6�,
for the two values of �0 at the border of the domain, �0=� /2 and
�0=0.

FIG. 5. The critical angle �C as a function of the ratio of the
splay and bend elastic constants K1 and K3 calculated from Eq. �8�.
The critical region is indicated by the solid line.

FIG. 6. The energy per unit area F / �4ld� as a function of the
angle at the domain boundaries �0 for �=30°, 45°, and 60°.
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per unit area occurs for �0=0, showing that state I is the
stable one. Finally, for �=60°, i.e., �
�C, the minimum is
verified for �0=� /2, indicating that state II is the stable
state. This calculation was performed using Eq. �8� and the
parameters values K1=K3=10−11 N, WS=2.5�10−6 J /m2, d
=20 �m, and L=120 �m.

It is well known that most of the nematic LCs show K3

K1; it means that the large region for which K1 /K3
1, in
Fig. 5, does not present a practical interest, but in our theo-
retical analysis it is important to observe the convergence
limits. It is also important to emphasize that the value of
K1 /K3 is temperature-dependent. Therefore, the transitions
between the two states can be temperature-induced.

When the pattern periodicity becomes small �L→0�, in
such a manner that the director is no longer able to follow
the orientation imposed by the easy axis in each domain, a
homogeneous state of alignment is expected with �0=0 or
�0=� /2. Therefore, the continuous decreasing of L, starting
from any of the two stable states �I or II�, would allow one to
observe in-plane and out-of-plane orientational transitions.

Experiments are in progress to detect these transitions. Such
transitions have previously been reported by other authors
for different systems �11,14,20,21�.

In conclusion, we have analyzed the configuration of a
nematic LC in contact with a microtextured patterned surface
of period L along the x axis. The easy-axis direction in each
domain makes alternating angles � and −� with the x axis. In
the limit of large L, we have considered that the director is
submitted to a continuous distortion and the orientation in
the boundary of the domains can be either parallel or perpen-
dicular to the x axis. The two possible configurations corre-
spond to stable orientational states, called state I and state II.
We have found that, depending on value of the ratio K1 /K3,
the two states are separated by a line �corresponding to �C�,
where the two states present the same probability of occur-
ring.
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port.
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